采矿与安全工程学报 ›› 2015, Vol. 32 ›› Issue (6): 905-910.

• 论文 • 上一篇    下一篇

基于 BP 神经网络的导水裂隙带高度预测

  

  1. 1.河南理工大学能源科学与工程学院,河南焦作 454000; 2.中国矿业大学(北京)资源与安全工程学院,北京 100083
  • 收稿日期:2014-01-13 出版日期:2015-11-15 发布日期:2015-12-04
  • 作者简介:李振华(1979—),男,山东省金乡县人,博士,副教授,从事资源开发新技术和矿山水害防治方面的研究。
  • 基金资助:

    国家重点基础研究发展计划(973)项目(2013CB227903);国家自然科学基金项目(51374093,51104058);教育部高等学校博士学科点专项科研基金项目(20114116120005)

Forecast of the height of water flowing fractured zone based on BP neural networks

  • Received:2014-01-13 Online:2015-11-15 Published:2015-12-04

摘要: 为准确预测工作面导水裂隙带发育高度,在总结顶板导水裂隙带高度预测方法和理论的基础上,结合大量实际资料,分析归纳出采深、煤层倾角、煤层厚度、煤层硬度、岩层结构、顶板岩石单轴抗压强度、开采厚度和采空区斜长是影响导水裂隙带高度的主要因素。根据全国典型案例,建立了基于BP 神经网络的导水裂隙带高度预测模型,确定了BP 神经网络所需的输入样本和测试样本,运用Matlab 软件对网络进行了训练,得到了优化的网络模型,并利用建立的模型预测了焦作煤田赵固一矿11011 工作面导水裂隙带高度。通过与实测结果对比,证明基于BP 神经网络建立的导水裂隙带高度预测模型的计算结果比规程提供的公式计算的结果更接近实际。

关键词: BP 神经网络, 导水裂隙带高度, 影响因素, 样本

Abstract: In order to predict exactly the forming height of water flowing fractured zone, based on summing up methods and theories to forecast the height of water flowing fractured zone, combined with a lot of practical information analysis, the main eight factors influencing the height of water flowing fractured zone have been found out, which are mining depth, coal seam inclination angle, coal seam thickness, coal seam hardness, rock structure, the uniaxial compressive strength of rock, mining thickness and goaf plagioclase. According to the typical cases in China, the forecasting model of the height of water flowing fractured zone based on BP neural networks has been built, and the input samples and testing samples needed by BP neural networks have been determined. The optimization of network model has been got after Matlab software is used in the training of network. The height of water flowing fractured zone of 11011 workface in Zhaogu No.1 Mine, Jiaozuo cola field has been forecasted according to the established network model. Compared with measured results, it has shown that the calculation results obtained by the BP neural network model are closer to the reality than those obtained according to the empirical formula.

Key words: BP neural network, the height of water flowing fractured zone, influencing factors, sample