采矿与安全工程学报 ›› 2015, Vol. 32 ›› Issue (6): 996-1003.

• 论文 • 上一篇    下一篇

人工冻土融沉试验及融沉系数预测研究

  

  1. 1.中国矿业大学深部岩土力学与地下工程国家重点实验室,江苏 徐州 221116; 2.中国科学院寒区旱区环境与工程研究所冻土工程国家重点实验室,甘肃 兰州 730000; 3.江苏省建筑安全与减灾工程技术研发中心,江苏 徐州 221116
  • 收稿日期:2015-04-24 出版日期:2015-11-15 发布日期:2015-12-04
  • 作者简介:陶祥令(1984—),男,山东省菏泽市人,博士,从事深部土与冻土物理力学特性方面的研究。
  • 基金资助:

    国家重点基础研究发展计划(973)项目(2012CB026103);冻土工程国家重点实验室开放基金项目(SKLFSE201305)

A study of the prediction of artificial frozen soil thaw settlement test and thaw settlement coefficient

  • Received:2015-04-24 Online:2015-11-15 Published:2015-12-04

摘要: 为了研究人工凿井冻结法施工中冻结壁解冻融沉效应的产生而导致井筒壁后附加力的变化,以徐州黏土冻融为研究对象,通过人工冻结土融沉特性试验,分别开展了人工冻土不同含水率、不同单向冻结温度梯度、不同外荷载的冻融特性分析。结果表明:试验系统补水情形下,相同干密度的黏土单向冻结温度梯度为1.4 ℃/cm 时融沉量值为0.98 mm,大于2.0 ℃/cm 融沉量值 0.61 mm,增大幅值约60.6%;相同单向冻结温度梯度下,随着外载荷的增大融沉量随之增大,两者增长趋势一致,但幅度不一致。基于对冻土融沉特性受多因素综合影响的认识,采用改进的人工神经网络方法,建立了多样本、多因素影响下的融沉系数关系数据库,误差分析表明,改进的预测算法具有较好的精度。

关键词: 人工冻土, 温度梯度, 融沉系数, 神经网络

Abstract: In order to investigate the changes of the additional force in the back of the shaft lining wall, which is caused by the thawing effect of the frozen wall in the construction of the special sinking shaft with freezing method, indoor freeze-thaw cycle tests have been carried out under different moisture contents, unidirectional temperature gradients and external loads, taking Xuzhou clay as the object of study. The results show that: when the test system was under water replenishment, the clay under 1.4 ℃ /cm unidirectional freezing gradient has 0.98 mm settlement, which is 60.6% larger than the clay with the same dry density but under 2.0 ℃/cm freezing gradient (with 0.61 mm in settlement). Under the same unidirectional freezing temperature gradient, the thawing settlement increases with the increment of load, of which the increasing trend of is similar while the increasing magnitude is not consistent. Based on the fact that the thawing character of freezing soil is effected by multiple factors, a relational database about thaw settlement coefficient with multi-sample and multi-factor has been built by utilizing the improved artificial neural network. The error analysis certifies that the improved prediction algorithm has greater accuracy.

Key words: artificial frozen soil, temperature gradient, thaw settlement coefficient, neural network