采矿与安全工程学报 ›› 2016, Vol. 33 ›› Issue (1): 70-76.

• 论文 • 上一篇    下一篇

基于RBF模糊神经网络模型的深厚冲积层 立井冻结压力分析与预测

  

  1. 1.安徽理工大学土木建筑学院,安徽 淮南 232001;2.南通职业大学建筑工程学院, 江苏 南通 226001;3.安徽大学资源与环境工程学院,安徽 合肥 230022
  • 收稿日期:2015-06-25 出版日期:2016-01-15 发布日期:2016-03-01
  • 作者简介:姚亚锋(1978—),男,江苏省南通市人,博士,讲师,从事智能计算在地下结构工程方面的研究。
  • 基金资助:

    国家自然科学基金项目(51374010,51474004);安徽高校省级自然科学研究重点项目(KJ2010A094,KJ2011A093)

Analysis and prediction of vertical shaft freezing pressure in deep alluvium based on RBF fuzzy neural network model

  • Received:2015-06-25 Online:2016-01-15 Published:2016-03-01

摘要: 针对丁集矿井壁冻结压力进行不同监测水平的现场实测,发现冻结压力随时间和环境而变化,受层位深度、岩土含水率、冻结壁平均厚度和平均温度等因素的影响,具有明显的不确定性,以变异系数表征其不确定程度。在此基础上优化传统的 RBF神经网络,把变异系数引入模糊中心值和权值学习策略中,建立深厚冲积层井壁冻结压力预测模型。该模型以层位深度、含水率、冻结壁平均厚度和平均温度为输入信息量,区分黏土层与钙质黏土层,采用两淮地区 7 只井筒 33 个监测水平的样本数据进行训练学习,最后通过口孜东矿井壁冻结压力预测分析进行模型验证。结果表明:现场实测值与预测值拟合度好,模型算法高效,精度合理,为两淮地区深厚冲积层立井冻结压力的分析与预测提供可靠依据。

关键词: 冻结压力, 变异系数, RBF模糊神经网络, 学习策略优化, 工程预测

Abstract: The field measurement of varied monitoring levels about the shaft freezing pressure in Dingji mine has shown that the freezing pressure changes with time and circumstance. It is easily influ- enced by many factors, such as strata depth, geotechnical moisture content, average freezing wall thick- ness and mean temperature, and that it has obvious uncertainty. The degree of uncertainty has been characterized by the variation coefficient, laying a foundation for optimizing the traditional RBF neural network and introducing variation coefficient of freezing pressure to fuzzy central value and weight value learning strategy to establish prediction model of shaft freezing pressure in deep alluvium. With variables of strata depth, geotechnical moisture content, average freezing wall thickness and mean tem- perature as the input information, the model has been used to distinguish clay strata and calcareous clay strata in training and learning with sample data from thirty three monitoring levels in seven shafts of Huainan and Huaibei areas, and finally has made an engineering prediction for the shaft freezing pres- sure in Kouzidong mine. The results have shown that the field measurement has well fitted with the pre- diction; the efficient and precise model algorithm has provided reliable basis for analysis and prediction of vertical shaft freezing pressure in deep alluvium of Huainan and Huaibei areas.

Key words: freezing pressure, variation coefficient, RBF fuzzy neural network, learning strategy optimization, engineering prediction