采矿与安全工程学报 ›› 2025, Vol. 42 ›› Issue (1): 147-160.doi: 10.13545/j.cnki.jmse.2024.0318
丁自伟1,高成登1,张玲2,张旭2,侯涛2,翟剑平2,王家行2,董云俊2
摘要: 随着全断面硬岩掘进机(TBM)在煤矿巷道掘进施工中的广泛应用,地层信息的准确、实时识别已成为保证掘进效率的关键因素。为了研究掘进参数与地层岩性的相互作用关系,以西北矿业高家堡煤矿西区开拓大巷为工程背景,通过对稳定阶段掘进参数的深入分析,建立地层岩性与关键掘进参数之间的“机-岩”感知关系,提出基于数据驱动的TBM掘进地层岩性识别的Stacking集成预测算法,确定与地层岩性预测相关的主要输入特征参数,包括推进速度v、刀盘转速n、刀盘推力F、刀盘扭矩T和贯入度P。训练结果表明,Stacking预测模型在5个输入参数的平衡精度和训练时间下均获得了最佳性能;预测模型多元评价结果显示,Stacking模型的AUC曲线面积指数为0.97,比单一的XGBoost,ANN和SVM模型(0.94,0.94,0.95)预测精度更高,且在处理不均衡数据预测表现出明显的优势。因此,基于本研究的预测模型可以很好地指导现场TBM掘进参数的调整,可有效减少TBM故障停机和刀头的磨损,提高掘进效率。
中图分类号: