采矿与安全工程学报 ›› 2014, Vol. 31 ›› Issue (2): 236-242.

• 论文 • 上一篇    下一篇

基于主成分分析与距离判别分析法的突水水源识别方法

  

  1. 1.中南大学资源与安全工程学院,湖南 长沙 410083; 2.深部金属矿产开发与灾害控制湖南省重点实验室,湖南 长沙 410083
  • 出版日期:2014-03-15 发布日期:2014-03-20
  • 作者简介:宫凤强(1979-),男,山东省潍坊市人,博士后,从事工程灾害预测与控制等方面的研究。 E-mail:fengqiang@126.com Tel:18175973819
  • 基金资助:

    国家自然科学基金项目(41102170);中国博士后科学基金项目(2011M500973,2012T50702);中央高校基本科研业务费专项资金项目(2011QNZT090);中南大学前沿研究计划项目(2010QZZD001)

Recognition method of mine water inrush sources based on the principal element analysis and distance discrimination analysis

  • Online:2014-03-15 Published:2014-03-20

摘要: 矿井突水是采矿生产过程中威胁最大的自然灾害之一,快速有效地判别矿井突水水源是采矿工程安全生产的重要保障。选取7种水化学成分指标作为突水水源识别的样本变量,采用主成分分析与距离判别分析相结合的方法建立了突水水源判别模型。以淮南老矿区谢一煤矿不同水层的水化学特征资料中的33个为学习样本,11个为预测样本,对该方法进行了检验和应用,并与现有的灰色关联度判别模型、Bayes判别模型的判别结果进行分析比较。研究结果表明:基于主成分分析与距离判别方法的突水水源判别模型其回判准确率为95%,预测正确率为91%,为矿山突水水源的识别提供了一种新方法。

关键词: 水源判别, 矿井突水, 距离判别分析, 主成分分析

Abstract: Mine water inrush is one of the greatest natural disasters in the mining production process. Quick and effective identification of mine water inrush source is an important guarantee of safe production in mining engineering. Seven kinds of water chemical composition having been selected as the sample variables in water bursting source recognition,and a forecast model of water inrush source is built by combining distance discriminant analysis with principal component analysis. This model is tested and applied in the different water layer of Xieyi Coal Mine in Huainan with thirty-three training samples and eleven predicting samples,and it is compared with the gray correlation discrimination model and Bayesian discrimination model. The results show that the model shows 95% of accuracy,and the predicting correct rate is up to 91%,which provides a new method for mine water inrush identification.

Key words: identification of water source, mine water inrush, distance discriminant analysis, principal component analysis